1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
/*
* =====================================================================================
*
* Filename: body.cpp
*
* Description: Method definitions for body class.
*
* Version: 1.0
* Created: 03/17/2017 08:07:35 PM
* Revision: none
* Compiler: gcc
*
* Author: Martin Miller (MHM), miller7@illinois.edu
* Organization: Aerospace Robotics and Controls Lab (ARC)
*
* =====================================================================================
*/
#include "body.h"
void
Body::clamp()
{
#ifdef DOCLAMP
// Constrain the height
if (X[2]<MAXHEIGHT) {
X[2]=MAXHEIGHT;
} else if (X[2]>MINHEIGHT) {
X[2]=MINHEIGHT;
}
#endif /* ----- DOCLAMP ----- */
}
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: dx
* Description: Increments the state by dx after a Kalman update.
*--------------------------------------------------------------------------------------
*/
void
Body::dx ( const Matrix<double,STATESIZE,1> &del )
{
X += del;
clamp();
return ;
} /* ----- end of method Body::dx ----- */
void
Body::vel ( const Matrix<double,3,1> &v )
{
X.segment<3>(3) = v;
return ;
} /* ----- end of method Body::vel ----- */
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: S
* Description: Returns the matrix S=HPH.T+R. HPH.T is trivial, so Body::H() is
* not called explicitly.
*--------------------------------------------------------------------------------------
*/
Matrix<double,1,1>
Body::S ( const Matrix<double,STATESIZE,STATESIZE> &Pxx )
{
Matrix<double,1,1> S;
S << Pxx(2,2);
return S+R();
} /* ----- end of method Body::S ----- */
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: pos
* Description: Stores the UTM position in NED format.
*--------------------------------------------------------------------------------------
*/
void
Body::pos ( const UTM &utm )
{
utm_c = utm.zone_c;
utm_i = utm.zone_i;
X[0] = utm.northing;
X[1] = utm.easting;
X[2] = -utm.up;
return ;
} /* ----- end of method Body::pos ----- */
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: R
* Description: Returns R matrix of measurement noise for height measurement.
*--------------------------------------------------------------------------------------
*/
Matrix<double,1,1>
Body::R()
{
Matrix<double,1,1> R;
R << R_HEIGHT;
return R;
}
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: Q
* Description: Returns Q matrix of process noise for the body.
*--------------------------------------------------------------------------------------
*/
Matrix<double,STATESIZE,STATESIZE>
Body::Q (double dt)
{
Matrix<double,STATESIZE,STATESIZE> Q;
Q = Matrix<double,STATESIZE,STATESIZE>::Zero();
Q.block<3,3>(0,0) = 0.25*dt*dt*dt*dt*Matrix<double,3,3>::Identity();
Q.block<3,3>(3,0) = 0.5*dt*dt*dt*Matrix<double,3,3>::Identity();
Q.block<3,3>(0,3) = 0.5*dt*dt*dt*Matrix<double,3,3>::Identity();
Q.block<3,3>(3,3) = dt*dt*Matrix<double,3,3>::Identity();
Q *= IMU_NOISE;
#if STATESIZE==13
Q.block<4,4>(6,6) = dt*dt*IMU_NOISE*Matrix<double,4,4>::Identity();
Q.block<3,3>(10,10) = dt*dt*IMU_RANDOMWALK*Matrix<double,3,3>::Identity();
#else
Q.block<3,3>(6,6) = dt*dt*IMU_RANDOMWALK*Matrix<double,3,3>::Identity();
#endif
return Q;
} /* ----- end of method Body::q ----- */
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: H
* Description: Returns the Jacobian of the measurement model, H.
*--------------------------------------------------------------------------------------
*/
Matrix<double,1,STATESIZE>
Body::H ( )
{
Matrix<double,1,STATESIZE> H;
H = Matrix<double,1,STATESIZE>::Zero();
H(2) = 1.;
return H ;
} /* ----- end of method Body::H ----- */
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: h
* Description: Returns the predicted measurement vector, h.
*--------------------------------------------------------------------------------------
*/
Matrix<double,1,1>
Body::h ( )
{
Matrix<double,1,1> h;
h[0] = X[2];
return h;
} /* ----- end of method Body::h_hat ----- */
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: F
* Description: Returns the Jacobian of the motion model of the body.
*--------------------------------------------------------------------------------------
*/
Matrix<double,STATESIZE,STATESIZE>
#if STATESIZE==13
Body::F ( const Vector3d &ang, double dt )
#else
Body::F ( const Vector3d &ang, const Quaterniond &q, double dt )
#endif
{
Matrix<double,STATESIZE,STATESIZE> F = Matrix<double,STATESIZE,STATESIZE>::Zero();
#if STATESIZE==13
Quaterniond q = qhat();
#endif
Matrix<double,3,3> Rbw(q.toRotationMatrix());
Matrix<double,3,3> W;
W = skewSymmetric(ang);
F.block<3,3>(0,3) = Rbw;
F.block<3,3>(3,3) = -W;
#if STATESIZE==13
double qbw1,qbw2,qbw3,qbw4;
qbw1 = q.x();
qbw2 = q.y();
qbw3 = q.z();
qbw4 = q.w();
/* Jacobian generated using symbolic matlab */
double v1,v2,v3;
v1 = X(3);
v2 = X(4);
v3 = X(5);
F.block<1,4>(0,6) << 2*qbw1*v1 + 2*qbw2*v2 + 2*qbw3*v3,
2*qbw1*v2 - 2*qbw2*v1 + 2*qbw4*v3,
2*qbw1*v3 - 2*qbw3*v1 - 2*qbw4*v2,
2*qbw2*v3 - 2*qbw3*v2 + 2*qbw4*v1;
F.block<1,4>(1,6) << 2*qbw2*v1 - 2*qbw1*v2 - 2*qbw4*v3,
2*qbw1*v1 + 2*qbw2*v2 + 2*qbw3*v3,
2*qbw2*v3 - 2*qbw3*v2 + 2*qbw4*v1,
2*qbw3*v1 - 2*qbw1*v3 + 2*qbw4*v2;
F.block<1,4>(2,6) << 2*qbw3*v1 - 2*qbw1*v3 + 2*qbw4*v2,
2*qbw3*v2 - 2*qbw2*v3 - 2*qbw4*v1,
2*qbw1*v1 + 2*qbw2*v2 + 2*qbw3*v3,
2*qbw1*v2 - 2*qbw2*v1 + 2*qbw4*v3;
F.block<3,4>(3,6) << -2*gravity_world*qbw3, 2*gravity_world*qbw4, -2*gravity_world*qbw1, 2*gravity_world*qbw2,
-2*gravity_world*qbw4, -2*gravity_world*qbw3, -2*gravity_world*qbw2, -2*gravity_world*qbw1,
2*gravity_world*qbw1, 2*gravity_world*qbw2, -2*gravity_world*qbw3, -2*gravity_world*qbw4;
F.block<4,4>(6,6) = omega(ang);
F.block<3,3>(3,10) = -Matrix<double,3,3>::Identity();
#else
F.block<3,3>(3,6) = -Matrix<double,3,3>::Identity();
#endif
F *= dt;
F += Matrix<double,STATESIZE,STATESIZE>::Identity();
return F;
} /* ----- end of method Body::F ----- */
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: omega
* Description: Returns the Omega(w) used for the motion model of the
* quaternion.
*--------------------------------------------------------------------------------------
*/
Matrix<double,4,4>
Body::omega ( const Vector3d &x )
{
Matrix<double,4,4> Omega;
Omega.block<3,3>(0,0) = -skewSymmetric(x);
Omega.block<3,1>(0,3) = x;
Omega.block<1,3>(3,0) = x.transpose();
Omega(3,3) = 0;
return Omega;
} /* ----- end of method Body::omega ----- */
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: motionModel
* Description: Propagates the motion model of the body into vector X.
*--------------------------------------------------------------------------------------
*/
void
#if STATESIZE==13
Body::motionModel ( const Vector3d &acc, const Vector3d &ang, const double dt)
#else
Body::motionModel ( const Vector3d &acc, const Vector3d &ang, const Quaterniond &q, const double dt)
#endif
{
Vector3d bias = accelerometer_bias();
Matrix<double,6,3> A;
Matrix<double,6,1> b;
A = Matrix<double,6,3>::Zero();
b = Matrix<double,6,1>::Zero();
#if STATESIZE==13
Quaterniond q = qhat();
#endif
Matrix<double,3,3> Rbw(q.toRotationMatrix());
A.block<3,3>(0,0) = Rbw;
Matrix<double,3,3> W;
W = skewSymmetric(ang);
A.block<3,3>(3,0) = -W;
b.segment<3>(3) = acc-bias+Rbw.transpose()*gravity_world;
X.segment<6>(0) += (A*X.segment<3>(3)+b)*dt;
#if STATESIZE==13
X.segment<4>(6) += 0.5*omega(ang)*X.segment<4>(6);
#endif
clamp();
return ;
} /* ----- end of method Body::motionModel ----- */
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: skewSymmetric
* Description: Create the skew symmetric matrix y from the vector x.
*--------------------------------------------------------------------------------------
*/
Matrix<double,3,3>
Body::skewSymmetric ( const Vector3d &x )
{
Matrix<double,3,3> y;
y << 0.,-x[2], x[1], x[2],0.,-x[0],-x[1],x[0],0.;
return y;
} /* ----- end of method Body::skewSymmetric ----- */
void
Body::unicsv ( )
{
printf("%d,%c,%f,%f,%f,%f,%f,%f,%f,%f,%f", utm_i, utm_c,
X[0], X[1], -X[2],
X[3], X[4], X[5],
X[6], X[7], X[8]);
return ;
} /* ----- end of method Body::unicsv ----- */
void
Body::accelerometer_bias ( const Vector3d &b )
{
#if STATESIZE==13
X.segment<3>(10) = b;
#else
X.segment<3>(6) = b;
#endif
return ;
} /* ----- end of method State::accelerometer_bias ----- */
Vector3d
Body::accelerometer_bias ( )
{
Vector3d bs;
#if STATESIZE==13
bs = X.segment<3>(10);
#else
bs = X.segment<3>(6);
#endif
return bs ;
} /* ----- end of method State::accelerometer_bias ----- */
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: ned
* Description: Returns the body position in NED coordinates.
*--------------------------------------------------------------------------------------
*/
Vector3d
Body::ned ( )
{
return X.segment<3>(0);
} /* ----- end of method Body::ned ----- */
Vector3d
Body::vel ( )
{
return X.segment<3>(3);
} /* ----- end of method Body::vel ----- */
Matrix<double,STATESIZE,1>
Body::asVector ( )
{
return X;
} /* ----- end of method Body::asVector ----- */
void
Body::asVector ( const Matrix<double,STATESIZE,1> &m )
{
X = m;
return ;
} /* ----- end of method Body::asVector ----- */
/*
*--------------------------------------------------------------------------------------
* Class: Body
* Method: Body :: qhat
* Description: Returns the current quaternion estimate.
*--------------------------------------------------------------------------------------
*/
Quaterniond
Body::qhat ( )
{
#if STATESIZE==13
Quaterniond qbw(X(9),X(6),X(7),X(8));
#else
fprintf(stderr, "Quaternion is not being estimated, quitting.\n");
exit(1);
#endif
return qbw;
} /* ----- end of method Body::qhat ----- */
|